Abstract
Infrared spectroscopy (IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM) with energy dispersive X-ray analysis (EDS) were used to investigate the evolution of mechanical destruction of the pyrophyllite structure and final ground products upon grinding with a laboratory planetary ball mill. The raw ore used in this present work was mainly composed of pyrophyllite and quartz. This pyrophyllite was more resistant toward mechanical destruction, and the crystalline order of pyrophyllite was not completely destroyed until grinding for 240min with a 20:1 of weight ratio of the balls to powder. The existing crystalline phase in the final ground product was found to be quartz, which served as the associated phase in the original pyrophyllite mineral. The rate of destruction of pyrophyllite structure depended on the types of chemical bonds. Additionally, increasing the intensity of grinding resulted in acceleration of the mechanically induced amorphization of the pyrophyllite structure, whereas the associated quartz grains contributed to the deceleration of the amorphization of pyrophyllite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.