Abstract
Over the past decade or more, contradictory evidence of Martian climate, indicating that surface temperatures seldom if ever approach the melting point of water at midlatitudes, and geomorphic features, consistent with liquid flows at these same latitudes, have proven difficult to reconcile. In this article, we demonstrate that several features of liquid-erosional flows can be produced by dry granular materials when individual particle settling is slower than characteristic debris flow speeds. Since the gravitational acceleration on Mars is about one-third that on Earth, and since particle settling speeds scale with gravity, we propose that some (although perhaps not all) Martian geomorphological features attributed to liquid flows may in fact be associated with dry granular flows in the presence of reduced gravity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.