Abstract

This paper investigated the use of laser surface texturing (LST) to improve the tribological properties of YG6X cemented carbide. Three different spaced groove textures were processed on the surface of the YG6X carbide samples using a femtosecond laser. Friction experiments and friction simulations were performed under two friction subsets and two friction directions. The testing results showed that when the area density was 46%, the texture surface was beneficial when sliding against Si3N4, but not beneficial in reducing the coefficient of friction when sliding against Ti6Al4V titanium alloy. At area densities of 23% and 15.3%, the texture surface was beneficial when sliding against Si3N4, but not beneficial when sliding against the Ti6Al4V titanium alloy. When selecting the friction direction at 45° to the area density of 15.3%, the texture surface was not beneficial when sliding against the Si3N4 and Ti6Al4V titanium alloy. Sliding with Si3N4, the higher the stress value, the more easily the material was destroyed, leading to an elevated coefficient of friction and wear area. Sliding with Ti6Al4V titanium alloy, the higher the stress value of Ti6Al4V titanium alloy, the more easily the Ti6Al4V titanium alloy wore and generated a large number of abrasive chips.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.