Abstract
<p>Chlorine 36 (<sup>36</sup>Cl, T<sub>1/2</sub> = 301,000 years) is a radionuclide with natural and anthropogenic origin that can be rejected accidentally during decommissioning of nuclear power plants or chronically during recycling of nuclear waste. Once emitted into the atmosphere, <sup>36</sup>Cl (gas and particles) can be transferred to the soil and vegetal cover by dry and wet deposition. However, knowledge of these deposits is very scarce. Because of its relatively high mobility in the geosphere and its high bioavailability, <sup>36</sup>Cl fate in the environment should be studied for environmental and human impact assessments. So, the objective of this work is to determine the dry deposition rates of chlorine 36 on grassland. Grass is studied, as it is a link in the human food chain via cow's milk.</p><p>In order to achieve this objective, a method for extracting the chlorine contained in plant leaves has been developed. This method consists in heating the dried and grounded plant sample in presence of sodium hydroxide. A temperature gradient up to 450°C allows the extraction to be carried out in two stages: (i) The chlorides with a strong affinity for alkaline environments are first extracted from the plant and preserved in sodium hydroxide; (ii) The organic matter is then destroyed by combustion and the sodium hydroxide crystallised. Brought out from the oven, the dry residue is dissolved in ultrapure water and chemically prepared for the measurement of chlorine 36. This extraction method was validated by its application to NIST standards of peach and apple leaves. The average extraction efficiency of chlorides was 83 ± 3%.</p><p>For the determination of dry deposition rates, 1m<sup>2</sup> of grass was exposed every 2 weeks at the IRSN La Hague technical platform (PTILH) located 2 km downwind from Orano la Hague, a chronic source of low-level chlorine 36 emissions. A mobile shelter with automatic humidity detection covered the grass during rainy episodes. In proximity to the grass, atmospheric chlorine was also sampled at the same frequency as the grass. Gaseous chlorine was sampled by bubbling in sodium hydroxide and by an AS3000 sampler containing activated carbon cartridge. Particulate chlorine was collected on a composite (teflon and glass fibre) filter. Chlorine 36 was measured by accelerated mass spectrometry ASTER (Accelerator for Earth Sciences, Environment and Risks) at CEREGE, Aix-en-Provence, France. All samples were subjected to a succession of chemical preparations in order to remove the sulphur 36 (an isobaric interferent) and to collect the chlorides in the form of AgCl pastilles. The results show a chlorine 36 deposition flux on the grass of 2.94.10<sup>2</sup> at/m<sup>2</sup>.s with a deposition velocity in dry weather v<sub>d(gas+particles) </sub>= 8.10<sup>-4 </sup>m/s for a contribution of 65.5% of particulate chlorine 36 and 34.5% of gaseous chlorine 36. Based on these experimental results, a modelling of the dry and wet deposits will be carried out considering the parameters related to the canopy and the atmospheric turbulence.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.