Abstract
In this study, changes in the chemical composition, pH, cell wall and degradability of ensiled rice straw were investigated when treated with alkali, acid, oxidant agents (1-11 %, w/w) and a combination of an oxidant with either an alkali (ALHP) or an acid (ACHP). The findings of the study revealed that ALHP had a lower efficiency in enhancing fibre degradability compared to alkali alone. Oxidant treatment showed no detectable changes in pH, dry matter (DM) and phenolic compound (PC) solubility, or in silica and fibre content, but led to increased esterified groups formed within the cell wall constituents (hemicellulose and lignin). Increasing acid concentration led to an exponential change in both pH and solubility of DM and hemicelluloses while it quadratically increased PC and silica solubility. Moreover, crystallinity, hydrogen bonding and esterification were enhanced under high acid concentrations (11 %), but decreased under mild acid conditions (5 %). Increased alkalinity led to the linear enhancement of DM and PC solubility. Solubility of silica and hemicellulose did not exhibit any significant changes with alkali concentration above 7 %. A gradual enhancement (29 %) was observed in ruminal DM degradability with increasing oxidant concentration, whereas exponential (91 %) and quadratic (23 %) enhancements were observed with alkaline and acid treatments, respectively. Treatment with acid showed observable reductions in the degradability of both cellulose and hemicellulose, whereas oxidant treatment reduced only that of hemicellulose. Treatment with 7 % alkali (pH ∼ 12) followed by ensiling appeared to be a promising process for improving rice straw quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.