Abstract

The purpose of this study was to build an automated age-related macular degeneration (AMD) colour fundus photography (CFP) recognition method that incorporates confounders (other ocular diseases) and normal age-related changes by using drusen masks for spatial feature supervision. A range of clinical sources were used to acquire 7588 CFPs. Contrast limited adaptive histogram equalisation was used for pre-processing. ResNet50 was used as the backbone network, and a spatial attention block was added to integrate prior knowledge of drusen features into the backbone. The evaluation metrics used were sensitivity, specificity and F1 score, which is the harmonic mean of precision and recall (sensitivity) and area under the receiver-operating characteristic (AUC). Fivefold cross-validation was performed, and the results compared with four other methods. Excellent discrimination results were obtained with the algorithm. On the public dataset (n=6565), the proposed method achieved a mean (SD) sensitivity of 0.54 (0.09), specificity of 0.99 (0.00), F1 score of 0.62 (0.06) and AUC of 0.92 (0.02). On the private dataset (n=1023), the proposed method achieved a sensitivity of 0.92 (0.02), specificity of 0.98 (0.01), F1 score of 0.92 (0.01) and AUC of 0.98 (0.01). The proposed drusen-aware model outperformed baseline and other vessel feature-based methods in F1 and AUC on the AMD/normal CFP classification task and achieved comparable results on datasets that included other diseases that often confound classification. The method also improved results when a five-category grading protocol was used, thereby reflecting discriminative ability of the algorithm within a real-life clinical setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.