Abstract

Graphical and numerical reconstructions of the Rainy and Superior lobes of the Laurentide Ice Sheet suggest that drumlin formation was time transgressive. Suites of glacial landforms including drumlins, tunnel valleys, eskers, and ice‐collapse features can be correlated with specific recessional ice margins and are used as boundary conditions in the modeling. A contour map of the ice surface is then drawn using a specified basal shear stress. The shear stress can be constant or allowed to vary with position on the bed and is chosen to be consistent with the subglacial regime indicated by field evidence. Assuming that ice flow is parallel to drumlin orientations and perpendicular to the ice surface contours and moraines, the trend of drumlin axes is best accommodated by time transgressive drumlin formation during minor stillstands in the overall ice recession. The alternative, that drumlins were formed while the ice was at the Late Wisconsin maximum limit, requires large spatial variations in the basal shear stress distribution and therefore implies large mass‐balance gradients or large variations in basal sliding velocities over small distances, for which there is little evidence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.