Abstract
Several lines of evidence suggest that exploring the neurochemical basis of reward in invertebrate species may provide clues for the fundamental behavioral and neurobiology underpinnings of drug addiction. How the presence of drug-sensitive reward relates to a decrease in drug-seeking behavior and reinstatement of drug-seeking behavior in invertebrate systems is not known. The present study of a conditioned place preference (CPP) paradigm in crayfish (Orconectes rusticus) explores morphine-induced reward, extinction and reinstatement. Repeated intra-circulatory infusions of 2.5 μg/g, 5.0 μg/g and 10.0 μg/g doses of morphine over 5 days serve as a reward when paired with a distinct visual or tactile environment. Morphine-induced CPP was extinguished after repeated saline injections for 5 days in the previously morphine-paired compartment. After the previously established CPP had been eliminated during the extinction phase, morphine-experienced crayfish were challenged with 2.5 μg/g, 5.0 μg/g and 10.0 μg/g, respectively. The priming injections of morphine reinstated CPP in all training doses, suggesting that morphine-induced CPP is unrelenting, and that with time, it can be reinstated by morphine following extinction in an invertebrate model just like in mammals. Together with other recent studies, this work demonstrates the advantage of using crayfish as an invertebrate animal model to investigate the basic biological processes that underline exposure to mammalian drugs of abuse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.