Abstract
Following the formalism used for the development of the knowledge-based scoring function DrugScore, new distance-dependent pair potentials are obtained from nonbonded interactions in small organic molecule crystal packings. Compared to potentials derived from protein-ligand complexes, the better resolved small molecule structures provide relevant contact data in a more balanced distribution of atom types and produce potentials of superior statistical significance and more detailed shape. Applied to recognizing binding geometries of ligands docked into proteins, this new scoring function (DrugScore(CSD)) ranks the crystal structures of 100 protein-ligand complexes best among up to 100 generated decoy geometries in 77% of all cases. Accepting root-mean-square deviations (rmsd) of up to 2 angstroms from the native pose as well-docked solutions, a correct binding mode is found in 87% of the cases. This translates into an improvement of the new scoring function of 57% with respect to the retrieval of the crystal structure and 20% with respect to the identification of a well-docked ligand pose compared to the original Protein Data Bank-based DrugScore. In the analysis of decoy geometries of cross-docking studies, DrugScore(CSD) shows equivalent or increased performance compared to the original PDB-based DrugScore. Furthermore, DrugScore(CSD) predicts binding affinities convincingly. Reducing the set of docking solutions to examples that deviate increasingly from the native pose results in a loss of performance of DrugScore(CSD). This indicates that a necessary prerequisite to successfully resolving the scoring problem with a more discriminative scoring function is the generation of highly accurate ligand poses, which approximate the native pose to below 1 angstroms rmsd, in a docking run.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.