Abstract

BackgroundHigh grade gliomas are one of the most difficult cancers to treat and despite surgery, radiotherapy and temozolomide-based chemotherapy, the prognosis of glioma patients is poor. Resistance to temozolomide is the major barrier to effective therapy. Alternative therapeutic approaches have been shown to be ineffective for the treatment of genetically unselected glioma patients. Thus, novel therapies are needed. Mitochondria-directed chemotherapy is an emerging tool to combat cancer, and inner mitochondrial permeability transition (MPT) represents a target for the development of cytotoxic drugs. A number of agents are able to induce MPT and some of them target MPT-pore (MPTP) components that are selectively up-regulated in cancer, making these agents putative cancer cell-specific drugs.ObjectiveThe aim of this paper is to report a comprehensive analysis of the effects produced by selected MPT-inducing drugs (Betulinic Acid, Lonidamine, CD437) in a temozolomide-resistant glioblastoma cell line (ADF cells).MethodsEGFRvIII expression has been assayed by RT-PCR. EGFR amplification and PTEN deletion have been assayed by differential-PCR. Drugs effect on cell viability has been tested by crystal violet assay. MPT has been tested by JC1 staining. Drug cytostatic effect has been tested by mitotic index analysis. Drug cytotoxic effect has been tested by calcein AM staining. Apoptosis has been assayed by Hoechst incorporation and Annexine V binding assay. Authophagy has been tested by acridine orange staining.ResultsWe performed a molecular and genetic characterization of ADF cells and demonstrated that this line does not express the EGFRvIII and does not show EGFR amplification. ADF cells do not show PTEN mutation but differential PCR data indicate a hemizygous deletion of PTEN gene. We analyzed the response of ADF cells to Betulinic Acid, Lonidamine, and CD437. Our data demonstrate that MPT-inducing agents produce concentration-dependent cytostatic and cytotoxic effects in parallel with MPT induction triggered through MPTP. CD437, Lonidamine and Betulinic acid trigger apoptosis as principal death modality.ConclusionThe obtained data suggest that these pharmacological agents could be selected as adjuvant drugs for the treatment of high grade astrocytomas that resist conventional therapies or that do not show any peculiar genetic alteration that can be targeted by specific drugs.

Highlights

  • High grade gliomas are one of the most difficult cancers to treat and despite surgery, radiotherapy and temozolomide-based chemotherapy, the prognosis of glioma patients is poor

  • The aim of this paper is to report a comprehensive analysis of the effects produced by selected mitochondrial permeability transition (MPT)-inducing drugs (Betulinic Acid, Lonidamine, CD437) in a temozolomide-resistant glioblastoma cell line (ADF cells)

  • We analyzed the response of ADF cells to Betulinic Acid, Lonidamine, and CD437

Read more

Summary

Introduction

High grade gliomas are one of the most difficult cancers to treat and despite surgery, radiotherapy and temozolomide-based chemotherapy, the prognosis of glioma patients is poor. Resistance to TZM treatment, due to the activation of DNA repair proteins remains a major barrier to effective therapy [3] and high grade gliomas almost always recur. The use of inhibitors of other transduction pathways have been shown to be ineffective for the treatment of unselected patients suggesting that the inhibition of a specific pathway may result in the activation of a compensatory pathway that allows the tumour to survive. For these reasons novel therapeutic approaches are strongly needed

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.