Abstract

For scaling drug plasma clearance (CLp) from adults to children, extrapolations of population pharmacokinetic (PopPK) covariate models between drugs sharing an elimination pathway have enabled accelerated development of pediatric models and dosing recommendations. This study aims at identifying conditions for which this approach consistently leads to accurate pathway specific CLp scaling from adults to children for drugs undergoing hepatic metabolism. A physiologically based pharmacokinetic (PBPK) simulation workflow utilizing mechanistic equations defining hepatic metabolism was developed. We found that drugs eliminated via the same pathway require similar pediatric dose adjustments only in specific cases, depending on drugs extraction ratio, unbound fraction, type of binding plasma protein, and the fraction metabolized by the isoenzyme pathway for which CLp is scaled. Overall, between‐drug extrapolation of pediatric covariate functions for CLp is mostly applicable to low and intermediate extraction ratio drugs eliminated by one isoenzyme and binding to human serum albumin in children older than 1 month.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.