Abstract
Disodium vanillin l-aspartic acid modified LiAl-layered double hydroxide (LDH) coating was fabricated on A6N01-T5 Al alloy by the one step in-situ synthesis at relatively low temperature. The characteristics of the modified LiAl-LDH (VLDH) coating were characterized by X-ray diffractometer (XRD), Flourier transformation infrared spectrometer (FT-IR), Scanning electron microscopy (SEM), Energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS) and Atomic force microscopy (AFM). The results showed that vanillin l-aspartic acid anions were successfully intercalated into the interlayer of LiAl-LDH to form the smoother and more compact surface of the VLDH coating. The corrosion resistance of the VLDH coating was investigated by Scanning electron microscopy (SEM), Energy dispersive spectrometer (EDS), Elemental analyzer (EA), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. These results indicated that the VLDH coating possessed the excellent ion-exchange property and the better corrosion resistance than the unmodified LiAl-LDH (NLDH) coating in 3.5 wt% NaCl solution. The corrosion resistance mechanism of the VLDH coating was proposed in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.