Abstract
We hypothesized that amiodarone (AM), unlike d-sotalol (DS) (a 'pure' Class III agent), not only prolongs the action potential duration (APD) but also causes post-repolarization refractoriness (PRR), thereby preventing premature excitation and providing superior antiarrhythmic efficacy. We tested this hypothesis in 31 patients with inducible ventricular tachycardia (VT) during programmed stimulation with the use of the 'Franz' monophasic action potential (MAP) catheter with simultaneous pacing capability. We determined the effective refractory period (ERP) for each of three extrastimuli (S2-S4) and the corresponding MAP duration at 90% repolarization (APD90), both during baseline and on randomized therapy with either DS (n = 15) or AM (n = 16). We defined ERP > APD90 as PRR and ERP < APD90 as 'encroachment' on repolarization. A revised computer action potential model was developed to help explain the mechanisms of these in-vivo human-heart phenomena. Encroachment but not PRR was present in all patients at baseline and during DS treatment (NS vs. baseline), and VT was non-inducible in only 2 of 15 DS patients. In contrast, in 12 of 16 AM patients PRR was present (P < 0.001 vs. baseline), and VT was no longer inducible. Our model (with revised sodium channel kinetics) reproduced encroachment and drug-induced PRR. Both, AM and DS, prolonged APD90 but only AM produced PRR and prevented encroachment of premature extrastimuli. Our computer simulations suggest that PRR is due to altered kinetics of the slow inactivation of the rapid sodium current. This may contribute to the high antiarrhythmic efficacy of AM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.