Abstract

Abstract Neutrophils are the most abundant white blood cell in blood and play a critical role in preventing infections as part of the innate immune system. Reduction in neutrophils below an absolute count of 500 cells/μL is termed severe neutropenia or agranulocytosis. Drug-induced immune neutropenia (DIIN) occurs when drug-dependent antibodies form against neutrophil membrane glycoproteins and cause neutrophil destruction. Affected patients have fever, chills, and infections; severe infections left untreated can result in death. Treatment with granulocyte colony-stimulating factor can hasten neutrophil recovery. Cumulative data show that severe neutropenia or agranulocytosis associated with exposure to nonchemotherapy drugs ranges from approximately 1.6 to 15.4 cases per million population per year. Drugs most often associated with neutropenia or agranulocytosis include dipyrone, diclofenac, ticlopidine, calcium dobesilate, spironolactone, antithyroid drugs (e.g., propylthiouracil), carbamazepine, sulfamethoxazole-trimethoprim, β-lactam antibiotics, clozapine, levamisole, and vancomycin. Assays used for detection of neutrophil drug-dependent antibodies (DDAbs) include flow cytometry, monoclonal antibody immobilization of granulocyte antigens, enzyme-linked immunosorbent assay, immunoblotting, granulocyte agglutination, and granulocytotoxicity. However, testing for neutrophil DDAbs is rarely performed owing to its complexity and lack of availability. Mechanisms proposed for DIIN have not been rigorously studied, but those that have been studied include drug- or hapten-induced antibody formation and autoantibody production against drug metabolite or protein adducts covalently attached to neutrophil membrane proteins. This review will address acute, severe neutropenia caused by neutrophil-reactive antibodies induced by nonchemotherapy drugs—DIIN. Immunohematology 2014;30:95–101.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.