Abstract

BackgroundChagas disease is a potentially life-threatening disease caused by the protozoan parasite Trypanosoma cruzi. Current therapeutic management is limited to treatment with nitroheterocyclic drugs, such as nifurtimox (NFX) and benznidazole (BZ). Thus, the identification of affordable and readily available drugs to treat resistant parasites is urgently required worldwide. To analyse the effects of BZ on human macrophage gene expression, a quantitative PCR (qPCR) array analysis was performed using drug transporter and oxidative stress pathway genes to compare the gene expression profiles of human differentiated THP-1 macrophage (THP-1 MΦ) cells infected or not with benznidazole-sensitive (CL Brener) and naturally benznidazole-resistant (Colombiana) T. cruzi parasites followed by treatment with BZ.ResultsThe gene expression analysis indicated that the expression levels of 62 genes were either up- or downregulated at least 3-fold in the host upon infection with CL Brener and BZ treatment, of which 46 were upregulated and 16 were downregulated. Moreover, the expression level of 32 genes was altered in THP-1 MФ cells infected with Colombiana and treated with BZ, of which 29 were upregulated and 3 were downregulated. Our results revealed that depending on the specific condition, human THP-1 MΦ cells infected with T. cruzi strains with sensitive or resistant phenotypes and treated with BZ expressed high mRNA levels of AQP1, AQP9 and ABCB1 (MDR1) compared to those of the control cells.ConclusionsOur findings suggest that the proteins encoded by AQP1, AQP9 and ABCB1 may be implicated in benznidazole detoxification. Therefore, studies on gene expression are required to better understand the host response to pathogens and drug treatment integrated with functional and metabolic data to identify potentially novel targets for the treatment of this important and neglected tropical disease.

Highlights

  • Chagas disease is a potentially life-threatening disease caused by the protozoan parasite Trypanosoma cruzi

  • To provide an initial assessment of potential drug transporters and oxidative stress-related pathways involved in the toxic effects of BZ in host cells, we studied the expression of specific drug transporters and oxidative stress genes in human macrophages infected with T. cruzi strains with different BZ sensitivity phenotypes followed by treatment with BZ

  • Effect of benznidazole on the intracellular viability of benznidazole‐sensitive and naturally benznidazole‐resistant T. cruzi strains in human THP‐1 MΦ cells The dose-response assays to assess the efficacy of the drug against intracellular amastigotes showed that the ­IC50 of BZ for the T. cruzi Colombiana strain was 2.82fold greater than that for the CL Brener strain (Table 1)

Read more

Summary

Introduction

Chagas disease is a potentially life-threatening disease caused by the protozoan parasite Trypanosoma cruzi. Therapeutic schemes based on BZ have been widely accepted in the acute phase of infection by Trypanosoma cruzi; marked side effects associated with low specificity and systemic toxicity have been reported [4, 5]. Nitroheterocyclic compounds, such as nifurtimox (NFX) and BZ, generally act as prodrugs that need to be activated to assert their cytotoxic effects against T. cruzi parasites [6, 7]. This process increases the toxicity of BZ towards both the parasite and the host cells [11, 12]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call