Abstract

BackgroundOne of the most successful approaches to develop new small molecule therapeutics has been to start from a validated druggable protein target. However, only a small subset of potentially druggable targets has attracted significant research and development resources. The Illuminating the Druggable Genome (IDG) project develops resources to catalyze the development of likely targetable, yet currently understudied prospective drug targets. A central component of the IDG program is a comprehensive knowledge resource of the druggable genome.ResultsAs part of that effort, we have developed a framework to integrate, navigate, and analyze drug discovery data based on formalized and standardized classifications and annotations of druggable protein targets, the Drug Target Ontology (DTO). DTO was constructed by extensive curation and consolidation of various resources. DTO classifies the four major drug target protein families, GPCRs, kinases, ion channels and nuclear receptors, based on phylogenecity, function, target development level, disease association, tissue expression, chemical ligand and substrate characteristics, and target-family specific characteristics. The formal ontology was built using a new software tool to auto-generate most axioms from a database while supporting manual knowledge acquisition. A modular, hierarchical implementation facilitate ontology development and maintenance and makes use of various external ontologies, thus integrating the DTO into the ecosystem of biomedical ontologies. As a formal OWL-DL ontology, DTO contains asserted and inferred axioms. Modeling data from the Library of Integrated Network-based Cellular Signatures (LINCS) program illustrates the potential of DTO for contextual data integration and nuanced definition of important drug target characteristics. DTO has been implemented in the IDG user interface Portal, Pharos and the TIN-X explorer of protein target disease relationships.ConclusionsDTO was built based on the need for a formal semantic model for druggable targets including various related information such as protein, gene, protein domain, protein structure, binding site, small molecule drug, mechanism of action, protein tissue localization, disease association, and many other types of information. DTO will further facilitate the otherwise challenging integration and formal linking to biological assays, phenotypes, disease models, drug poly-pharmacology, binding kinetics and many other processes, functions and qualities that are at the core of drug discovery. The first version of DTO is publically available via the website http://drugtargetontology.org/, Github (http://github.com/DrugTargetOntology/DTO), and the NCBO Bioportal (http://bioportal.bioontology.org/ontologies/DTO). The long-term goal of DTO is to provide such an integrative framework and to populate the ontology with this information as a community resource.

Highlights

  • One of the most successful approaches to develop new small molecule therapeutics has been to start from a validated druggable protein target

  • The Illuminating the Druggable Genome (IDG) project defined ‘drug target’ as “a native protein or protein complex that physically interacts with a therapeutic drug and where this physical interaction is the cause of a clinical effect”

  • As we develop Drug Target Ontology (DTO) and other resources, we will facilitate the otherwise challenging integration and formal linking of biochemical and cell-based assays, phenotypes, disease models, omics data, drug targets and drug poly-pharmacology, binding sites, kinetics and many other processes, functions and qualities that are at the core of drug discovery

Read more

Summary

Introduction

One of the most successful approaches to develop new small molecule therapeutics has been to start from a validated druggable protein target. Following the advent of the Human Genome, several research groups in academia as well as industry have focused on “the druggable genome” i.e. the subsets of genes in the human genome that express proteins that have the ability to bind drug-like small molecules [2]. The researchers have estimated the number of druggable targets ranging from few hundreds to several thousands [3] It has been suggested by several analyses that only a small fraction of likely relevant druggable targets are extensively studied, leaving a potentially huge treasure trove of promising, yet understudied (“dark”) drug targets to be explored by pharmaceutical companies and academic drug discovery researchers. To the best of our knowledge, a publically available structured knowledge resource of drug target classifications and relevant annotations for the most important protein families, one that facilitates querying, data integration, re-use, and analysis does not currently exist. Content in the above-mentioned databases is scattered and in some cases inconsistent and duplicated, complicating data integration and analysis

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.