Abstract
BackgroundDrug-target interaction (DTI) prediction plays a pivotal role in drug discovery and drug repositioning, enabling the identification of potential drug candidates. However, most previous approaches often do not fully utilize the complementary relationships among multiple biological networks, which limits their ability to learn more consistent representations. Additionally, the selection strategy of negative samples significantly affects the performance of contrastive learning methods.ResultsIn this study, we propose CCL-ASPS, a novel deep learning model that incorporates Collaborative Contrastive Learning (CCL) and Adaptive Self-Paced Sampling strategy (ASPS) for drug-target interaction prediction. CCL-ASPS leverages multiple networks to learn the fused embeddings of drugs and targets, ensuring their consistent representations from individual networks. Furthermore, ASPS dynamically selects more informative negative sample pairs for contrastive learning. Experiment results on the established dataset demonstrate that CCL-ASPS achieves significant improvements compared to current state-of-the-art methods. Moreover, ablation experiments confirm the contributions of the proposed CCL and ASPS strategies.ConclusionsBy integrating Collaborative Contrastive Learning and Adaptive Self-Paced Sampling, the proposed CCL-ASPS effectively addresses the limitations of previous methods. This study demonstrates that CCL-ASPS achieves notable improvements in DTI predictive performance compared to current state-of-the-art approaches. The case study and cold start experiments further illustrate the capability of CCL-ASPS to effectively predict previously unknown DTI, potentially facilitating the identification of new drug-target interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.