Abstract
ObjectiveCombinations of pharmacological agents are essential for disease control and prevention, offering many advantages over monotherapies, with one of these being drug synergy. The state-of-the-art method to profile drug synergy in preclinical research is by using dose–response matrices in disease-appropriate models, however this approach is frequently labour intensive and cost-ineffective, particularly when performed in a medium- to high-throughput fashion. Thus, in this study, we set out to optimise a parameter of this methodology, determining the minimal matrix size that can be used to robustly detect and quantify synergy between two drugs.ResultsWe used a drug matrix reduction workflow that allowed the identification of a minimal drug matrix capable of robustly detecting and quantifying drug synergy. These minimal matrices utilise substantially less reagents and data processing power than their typically used larger counterparts. Focusing on the antileukemic efficacy of the chemotherapy combination of cytarabine and inhibitors of ribonucleotide reductase, we could show that detection and quantification of drug synergy by three common synergy models was well-tolerated despite reducing matrix size from 8 × 8 to 4 × 4. Overall, the optimisation of drug synergy scoring as presented here could inform future medium- to high-throughput drug synergy screening strategies in pre-clinical research.
Highlights
Current treatment regimens for many different diseases utilise combinations of pharmacological agents, and this is especially true in the treatment of cancer
There is a lack of nomenclature standardisation [5, 6], synergy can be broadly defined as a combination effect that is stronger than expected from the sum of the drugs individual effects, whilst antagonism is a combination effect that is less active than the additive effect
Synergistic killing of cancer cells by this drug combination has been documented for decades, and we utilised this example in the following study
Summary
Reducing the size of a drug matrix vastly reduces the wells used in a microwell plate (Table 1), but it remains unclear which matrix size can robustly detect and quantify drug synergy. Relative cell viabilities were calculated and analysed via the SynergyFinder web-application [12, 13] using 3 alternate drug-drug interaction models, zero interaction potency (ZIP) [14], bliss independence [15], and highest single agent (HSA) [16].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.