Abstract

The human multidrug transporter (MDR1 or P-glycoprotein) is an ATP-dependent cellular drug extrusion pump, and its function involves a drug-stimulated, vanadate-inhibited ATPase activity. In the presence of vanadate and MgATP, a nucleotide (ADP) is trapped in MDR1, which alters the drug binding properties of the protein. Here, we demonstrate that the rate of vanadate-dependent nucleotide trapping by MDR1 is significantly stimulated by the transported drug substrates in a concentration-dependent manner closely resembling the drug stimulation of MDR1-ATPase. Non-MDR1 substrates do not modulate, whereas N-ethylmaleimide, a covalent inhibitor of the ATPase activity, eliminates vanadate-dependent nucleotide trapping. A deletion in MDR1 (Delta amino acids 78-97), which alters the substrate stimulation of its ATPase activity, similarly alters the drug dependence of nucleotide trapping. MDR1 variants with mutations of key lysine residues to methionines in the N-terminal or C-terminal nucleotide binding domains (K433M, K1076M, and K433M/K1076M), which bind but do not hydrolyze ATP, do not show nucleotide trapping either with or without the transported drug substrates. These data indicate that vanadate-dependent nucleotide trapping reflects a drug-stimulated partial reaction of ATP hydrolysis by MDR1, which involves the cooperation of the two nucleotide binding domains. The analysis of this drug-dependent partial reaction may significantly help to characterize the substrate recognition and the ATP-dependent transport mechanism of the MDR1 pump protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.