Abstract

Retroviral transduction of human hematopoietic stem cells is an attractive strategy in gene therapy; however, transduction efficiency and duration of transgene expression may not be satisfactory in current protocols. Co-expression of a human multidrug resistance gene (MDR1) with a therapeutic gene affords selectable growth advantage to genetically modified cells. A bicistronic retrovirus vector, Ha-MDR-IRES-gp91, was constructed for the co-expression of MDR1 and gp91, a gene responsible for X-linked chronic granulomatous disease (X-CGD). Drug-selected co-expression of P-glycoprotein and gp91 was evaluated in transduced cells. Epstein-Barr virus-transformed B cells from X-CGD patients transduced with Ha-MDR-IRES-gp91 co-expressed human P-glycoprotein and gp91, and acquired superoxide-generating activity. Human CD34-positive cells from an X-CGD patient were transduced with Ha-MDR-IRES-gp91 and subsequently treated with 2 ng/ml vincristine. After 13 days, 20% of Ha-MDR-IRES-gp91-transduced cells were P-glycoprotein- and gp91-positive by FACS analysis. The superoxide-generating activity of the transduced population was 27% of that of normal cells. Mice transplanted with Ha-MDR-IRES-gp91-transduced bone marrow cells showed co-expression of P-glycoprotein and gp91 in peripheral blood mononuclear cells. By administering paclitaxel, the proportions of P-glycoprotein- and gp91-positive cells were increased in all the four mice examined. When mice transplanted with Ha-MDR-IRES-gp91-transduced cells were repeatedly administered paclitaxel, the ratios of P-glycoprotein- and gp91-positive cells were maintained for over 1 year. These results suggest that MDR1-bicistronic vectors may be useful to select the transduced hematopoietic cells in vivo. This may lead to the sustained expression of transgenes in the blood cells of patients treated with stem cell gene therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.