Abstract

Increased concentrations of the fibronectin glycoprotein can cause ectopic tissue growth patients with endometriosis and the formation of various cancerous tumors. Furthermore, fibronectin binding to its receptors from the EDA (Extra Domain A) region contributes to promote tumorigenesis, metastasis and vasculogenesis. Thus, the EDA region can be considered a unique target for therapeutic intervention. Therefore, the present study used computational methods to identify the best fibronectin inhibitor(s) among FDA-approved drugs. First, docking-based virtual screening was performed using PyRx 0.8. Next, FDA-approved drugs that obtained favorable results in the docking phase were selected for further studies and analysis using molecular dynamics (MD) simulation. The preliminary findings of the virtual screening showed that 17 FDA-approved drugs (from 2471) had more favorable energy with their binding energy less than −9 kcal/mol. The MD simulation results of these 17 drugs showed that Avapritinib had a lower RMSD value and higher binding energy and hydrogen bonding than the other complexes in the EDA domain. Also, analyses related to the second structure changes displayed that Avapritinib in the EDA domain led to more changes in the second structure. According to the results, the anticancer drug Avapritinib forms a more stable complex with fibronectin than other FDA-approved drugs. Furthermore, this drug leads to more changes in the second EDA structure, which may have more serious potential for inhibiting EDA fibronectin. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call