Abstract

Staphylococcus aureus is considered as one of the most widespread bacterial pathogens and continues to be a prevalent cause of mortality and morbidity across the globe. FmtA is a key factor linked with methicillin resistance in S. aureus. Consequently, new antibacterial compounds are crucial to combat S. aureus resistance. Here, we present the virtual screening of a set of compounds against the available crystal structure of FmtA. The findings indicate that gemifloxacin, paromomycin, streptomycin, and tobramycin were the top-ranked potential drug molecules based on the binding affinity. Furthermore, these drug molecules were analyzed with molecular dynamics simulations, which showed that the identified molecules formed highly stable FmtA-inhibitor(s) complexes. Molecular mechanics Poisson-Boltzmann surface area and quantum mechanics/molecular mechanics calculations suggested that the active site residues (Ser127, Lys130, Tyr211, and Asp213) of FmtA are crucial for the interaction with the inhibitor(s) to form stable protein-inhibitor(s) complexes. Moreover, fluorescence- and isothermal calorimetry-based binding studies showed that all the molecules possess dissociation constant values in the micromolar scale, revealing a strong binding affinity with FmtAΔ80, leading to stable protein-drug(s) complexes. The findings of this study present potential beginning points for the rational development of advanced, safe, and efficacious antibacterial agents targeting FmtA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call