Abstract
The increasing utilization of artificial intelligence algorithms in drug development has proven to be highly efficient and effective. One area where deep learning-based approaches have made significant contributions is in drug repositioning, enabling the identification of new therapeutic applications for existing drugs. In the present study, a trained deep-learning model was employed to screen a library of FDA-approved drugs to discover novel inhibitors targeting JAK2. To accomplish this, reference datasets containing active and decoy compounds specific to JAK2 were obtained from the DUD-E database. RDKit, a cheminformatic toolkit, was utilized to extract molecular features from the compounds. The DeepChem framework's GraphConvMol, based on graph convolutional network models, was applied to build a predictive model using the DUD-E datasets. Subsequently, the trained deep-learning model was used to predict the JAK2 inhibitory potential of FDA-approved drugs. Based on these predictions, ribociclib, topiroxostat, amodiaquine, and gefitinib were identified as potential JAK2 inhibitors. Notably, several known JAK2 inhibitors demonstrated high potential according to the prediction results, validating the reliability of our prediction model. To further validate these findings and confirm their JAK2 inhibitory activity, molecular docking experiments were conducted using tofacitinib-an FDA-approved drug for JAK2 inhibition. Experimental validation successfully confirmed our computational analysis results by demonstrating that these novel drugs exhibited comparable inhibitory activity against JAK2 compared to tofacitinib. In conclusion, our study highlights how deep learning models can significantly enhance virtual screening efforts in drug discovery by efficiently identifying potential candidates for specific targets such as JAK2. These newly discovered drugs hold promises as novel JAK2 inhibitors deserving further exploration and investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.