Abstract

AbstractDrug repositioning (also called drug repurposing) is a strategy for identifying new therapeutic targets for existing drugs. This approach is of great importance in pharmacology as it is a faster and cheaper way to develop new medical treatments. In this paper, we present, to our knowledge, the first application of multiplex-heterogeneous network embedding to drug repositioning. Network embedding learns the vector representations of nodes, opening the whole machine learning toolbox for a wide variety of applications including link prediction, node labelling or clustering. So far, the application of network embedding for drug repositioning focused on heterogeneous networks. Our approach for drug repositioning is based on multiplex-heterogeneous network embedding. Such method allows the richness and complexity of multiplex and heterogeneous networks to be projected in the same vector space. In other words, multiplex-heterogeneous networks aggregate different multi-omics data in the same network representation. We validate the approach on a task of link prediction and on a case study for SARS-CoV2 drug repositioning. Experimental results show that our approach is highly robust and effective for finding new drug-target associations.KeywordsNetwork embeddingMultiplex-heterogeneous networkMulti-layer networkDrug repositioningGraph representation learningSARS-CoV2COVID-19

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.