Abstract
Although ion-exchange resins have been used widely as drug delivery systems, their exact release kinetics has not been reported yet. Usually only the rate-limiting step has been taken into account and the rest of the steps have been ignored as instantaneous processes. To investigate the exact release kinetics of polymer-coated drug/ion-exchange resin complexes for sustained drug delivery, the results of new mathematical modeling were compared with experimental results. Drug/resin complexes with a model drug, dextromethorphan, were prepared and used as cores for fluid-bed coating. An aqueous colloidal dispersion of poly(vinyl acetate) was applied for the coating. A comprehensive mathematical model was developed using a mechanistic approach by considering diffusion, swelling, and ion-exchange processes solved by numerical techniques. The rate-limiting factor of the uncoated resin particles was diffusion through the core matrix. Similarly, in the coated particles the rate-limiting factor was diffusion through the coating membrane. The mathematical model has captured the phenomena observed during experimental evaluations and the release dynamics from uncoated and coated (at different coat levels) particles were predicted accurately (maximum RMSE 2.4%). The mathematical model is a useful tool to theoretically evaluate the drug release properties from coated ion-exchange complexes thus can be used for design purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.