Abstract
Background:The purpose of this in vitro study was to investigate drug release kinetics and cytotoxicity of a novel drug delivery system for treatment of periodontitis.Materials and Methods:This in vitro study addresses the fabrication of a polycaprolactone/alginic acid-based polymeric film loaded with metronidazole, as a basic drug in the treatment of periodontal diseases. Films were prepared by solvent casting technique. Four formulations with different percentages of drug by weight (3%, 5%, 9%, and 13%) were prepared. Drug release kinetics were investigated using ultraviolet–visible spectroscopy during (one week). Data were analyzed using repeated measures ANOVA. Cytotoxicity of drug-loaded system extracts was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L929 cells after 24-h incubation. The results were evaluated according to ISO standard 10993-5 and assessed using ANOVA and Tukey's tests at a significance level of P < 0.05.Results:All polymeric films showed a burst drug release followed by a gradual release. Drug release data were fitted well with the first-order kinetic model in all drug-containing formulations indicating that drug release is a fraction of remaining drug in the matrix. Drug release is mainly driven by diffusion of medium into the composite matrix. 3%wt metronidazole-containing formulation exhibited the best MTT result.Conclusion:The findings of this study supported the synthesis of drug-loaded periodontal films with 3% metronidazole due to better biological properties along with the ability of acceptable drug release to eradicate anaerobic periodontal bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.