Abstract
A new drug delivery system (DDS) consisting of electrospun nanofibers is proposed. Layered mats of hydrophobic polycaprolactone (PCL) and polyethylene oxide (PEO) nanofibers were prepared successfully in a layer-by-layer manner using an electrospinning process. The PEO mat and drug were co-electrospun as a drug reservoir. Drug release rate was controlled physically by the thickness of the electrospun nanofibrous PCL layer, and its release behavior was examined over time. Release tests showed that the release behavior and the amount of initial burst of the drug were critically dependent on the thickness of the nanofibrous PCL mat. The release of drug showed a linear relationship with the thickness of the porous electrospun PCL mat. In addition, to demonstrate the feasibility of this type of DDS, the release behavior of the antimicrobial peptide HPA3NT3 from the nanofiber system was examined. The release of the peptide was easily controlled by the PCL nanofiber thickness and the released peptide did not lose biological activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.