Abstract
This paper presents a new model suitable to describe the drug release from drug delivery systems constituted by an ensemble of drug loaded crosslinked polymer particles. The model accounts for the main factors affecting the drug release such as the particle size distribution, the physical state and the concentration profile of the drug inside the polymeric particles, the viscoelastic properties of the polymer–penetrant system and the dissolution–diffusion properties of the loaded drug. In order to check the validity of the model, release experiments were performed by using crosslinked polyvinyl-pyrrolidone (PVP) particles and two different model drugs, MAP (medroxyprogesterone acetate) and TEM (Temazepam). MAP and TEM were chosen because of their completely different dissolution behaviours in water. In particular, TEM undergoes a phase transition to the crystalline state upon dissolution when it is loaded in the polymeric network in the amorphous state. The comparison with the experimental results confirms that the most important factors determining the drug release kinetics can be properly accounted for.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.