Abstract

In this work, N, O-carboxymethyl chitosan (CMCS) samples from virgin chitosan (CS) were synthesised and CMCS/polyethylene oxide (PEO) (50/50) blend nanofibrous samples were successfully electrospun from their aqueous solution. The electrospinning conditions to achieve smooth and fine diameter nanofibrous mats were optimised via D-optimal design approach. Afterwards, vitamin C and phenytoin sodium (PHT-Na) were added to these samples for producing wound dressing materials. H-nuclear magnetic resonance, scanning electron microscopy and Fourier transform infrared tests for the evaluation of functionalised CS, morphology and biodegradability studies of CMCS/PEO blend nanofibrous samples were applied. The kinetic and drug release mechanism for vitamin C and PHT-Na drug-loaded electrospun samples were also investigated by UV-vis spectrophotometer and high performance liquid chromatography, respectively. The results showed an approximately similar drug release rate of the two drugs and followed Higuchi's kinetic model. The stem cells viability and their adhesion on the surface of the samples containing PHT-Na and vitamin C were carried out using MTT assay and the best cells' biocompatibility was obtained using both drugs into the CMCS/PEO nanofibrous samples. Moreover, the in vivo animal wound model results revealed that the electrospun samples containing vitamin C and PHT-Na (1%) had a remarkable efficiency in the wounds' closure and their healing process compared with vitamin C/PHT-Na (50/50) ointment. Finally, the histology observations showed that the wound treated with optimised electrospun samples containing two drugs enabled regeneration of epidermis layers due to collagen fibres accumulation followed by granulating tissues formation without necrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.