Abstract

Solid lipid nanoparticles (SLNs) can enhance drug penetration into the skin, yet the mechanism of the improved transport is not known in full. To unravel the influence of the drug-particle interaction on penetration enhancement, 3 glucocorticoids (GCs), prednisolone (PD), the diester prednicarbate (PC) and the monoester betamethasone 17-valerate (BMV), varying in structure and lipophilicity, were loaded onto SLNs. Theoretical permeability coefficients (cm/s) of the agents rank BMV (–6.38) ≧ PC (–6.57) > PD (–7.30). GC-particle interaction, drug release and skin penetration were investigated including a conventional oil-in-water cream for reference. Both with SLN and cream, PD release was clearly superior to PC release which exceeded BMV release. With the cream, the rank order did not change when studying skin penetration, and skin penetration is thus predominantly influenced by drug release. Yet, the penetration profile for the GCs loaded onto SLNs completely changed, and differences between the steroids were almost lost. Thus, SLNs influence skin penetration by an intrinsic mechanism linked to a specific interaction of the drug-carrier complex and the skin surface, which becomes possible by the lipid nature and nanosize of the carrier and appears not to be derived by testing drug release. Interestingly, PC and PD uptake from SLN even resulted in epidermal targeting. Thus, SLNs are not only able to improve skin penetration of topically applied drugs, but may also be of particular interest when specifically aiming to influence epidermal dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.