Abstract

Successful drug development requires not only the optimization for specific and potent recognition by its pharmacodynamical targets, but also efficient delivery to these target sites. Drug-biomembrane reciprocal interactions are a key determinant to understand how a compound performs at a barrier with relevant implications in its pharmacokinetic behaviour especially in Absorption, Distribution, Metabolism and Excretion (ADME). Concerning this, a rational drug design, where medicinal chemists can envision how a structure can be optimized aiming an improved pharmaceutical profile, can be the solution to avoid bigger investments in drugs that might not be effective. Lipid biomimetic membrane models with different lipid constitution are increasingly employed as alternative platforms with very well defined and controlled conditions to predict structural, biophysical and chemical aspects involved in the compounds’ penetration and/or interaction with biomembranes. As a proof-of-concept, in this study several biomimetic membrane models (cell membrane and epithelial membrane of blood-brain barrier) were used and different biophysical techniques (derivative spectroscopy; quenching of steady-state and time-resolved fluorescence; dynamic light scattering; differential scanning calorimetry and small and wide angle x-ray diffraction) were applied to characterize the pharmacokinetic profile of a newly synthesized drug in order to support drug screening process decisions.

Highlights

  • DRUG SCREENING: PHARMACOKINETICSRelevant Information Better PredictionExpensive as drug screening processTHE DRUG-BIOMEMBRANE APPROACH ScatteringINTESTINAL ABSORPTION

  • how a compound performs at a barrier with relevant implications

  • be effective. Lipid biomimetic membrane models with different lipid constitution are increasingly employed as alternative platforms

Read more

Summary

Introduction

DRUG SCREENING: PHARMACOKINETICSRelevant Information Better PredictionExpensive as drug screening processTHE DRUG-BIOMEMBRANE APPROACH ScatteringINTESTINAL ABSORPTION.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.