Abstract
Currently, there is an urgent need to develop a technology for extracting drug information automatically from biomedical texts, and drug name recognition is an essential prerequisite for extracting drug information. This article presents a machine-learning-based approach to recognize drug names in biomedical texts. In this approach, a drug name dictionary is first constructed with the external resource of DrugBank and PubMed. Then a semi-supervised learning method, feature coupling generalization, is used to filter this dictionary. Finally, the dictionary look-up and the condition random field method are combined to recognize drug names. Experimental results show that our approach achieves an F-score of 92.54% on the test set of DDIExtraction2011.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.