Abstract

AbstractLarge macrocyclic peptides can achieve surprisingly high membrane permeability, although the properties that govern permeability in this chemical space are only beginning to come into focus. We generated two libraries of cyclic decapeptides with stable cross‐β conformations, and found that peptoid substitutions within the β‐turns of the macrocycle preserved the rigidity of the parent scaffold, whereas peptoid substitutions in the opposing β‐strands led to “chameleonic” species that were rigid in nonpolar media but highly flexible in water. Both rigid and chameleonic compounds showed high permeability over a wide lipophilicity range, with peak permeabilities differing significantly depending on scaffold rigidity. Our findings indicate that modulating lipophilicity can be used to engineer favorable ADME properties into both rigid and flexible macrocyclic peptides, and that scaffold rigidity can be used to tune optimal lipophilicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.