Abstract

Tumor-targeted drug carriers are becoming attractive for precise drug delivery in anti-tumor therapy. However, a lot of the reported drug delivery systems are complicatedly designed and their destiny in vivo is beyond our control, which limited their clinical applications. Hence, it is urgently needed to develop spatio-manipulable self-propelled nanosystems for drug delivery in a facile way. Here, we have successfully constructed drug-internalized bacterial swimmers, whose movement can be manually controlled by an external magnetic field (MF). We demonstrate that the swimmers maintain the mobility to align and swim along MF lines. Further studies reveal that the doxorubicin (DOX-) internalized bacterial swimmers are able to navigate toward tumor sites under the guidance of MF, rendering enhanced anti-tumor efficacy compared with that of dead ones and free DOX. Therefore, the MF-guided bacterial swimmers hold great promise for spatio-manipulable drug delivery in precision medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call