Abstract

1. The purpose of this study was to investigate the inhibitory effects of diclofenac on human cytochrome P450 1A2-, 2C19- and 3A4-mediated drug oxidations and to evaluate the drug interaction potential of diclofenac and 4′-hydroxydiclofenac.2. Diclofenac was converted to 4′-hydroxydiclofenac by recombinantly expressed human P450 1A2 with Km and Vmax values of 33 µM and 0.20 min−1, respectively. Diclofenac and 4′-hydroxydiclofenac suppressed flurbiprofen 4′-hydroxylation by P450 2C9 strongly and moderately, respectively; however, they did not affect P450 2C19-dependent S-mephenytoin hydroxylation or P450 3A4-dependent midazolam hydroxylation.3. Although the caffeine 3-N-demethylation activity of liver microsomal P450 1A2 was inhibited by simultaneous incubation with diclofenac, the riluzole N-hydroxylation activities of recombinant P450 1A2 and human liver microsomes were inhibited after preincubation with diclofenac or 4′-hydroxydiclofenac for 20 min in the presence of NADPH. Using the inhibition constant (37 µM) of diclofenac on caffeine 3-N-demethylation and the reported 95th percentiles of maximum plasma concentration (10.5 µM) after an oral dose of diclofenac, the in vivo estimated increase in area under the plasma concentration–time curve was 29%.4. These results suggest that diclofenac could inhibit drug clearance to a clinically important degree that depends on P450 1A2. Clinically relevant drug interactions in vivo with diclofenac are likely to be invoked via human P450 1A2 function in addition to those caused by the effect of diclofenac on P450 2C9.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call