Abstract

Thiopurines are frequently used for the treatment of IBD. The complex pharmacology, metabolism, mechanism of action and toxicity profile of these immunosuppressive drugs have now been partly elucidated. The activity of thiopurines is partly mediated by the metabolite 6-thioguanosine 5'-triphosphate, which inhibits the function of the small GTPase Rac1, leading to apoptosis of activated T cells, and influences the conjugation of T cells with antigen-presenting cells. The activity of the enzyme thiopurine S-methyltransferase has a major influence on the bioavailability and toxicity of thiopurines, and several thiopurine metabolites might have adverse effects in patients. Myelotoxicity can be caused by grossly elevated levels of 6-thioguanine nucleotides, and elevated levels of 6-methylmercaptopurine ribonucleotides have been associated with hepatotoxicity. The sensitivity and specificity of these methylated metabolites for predicting thiopurine-induced liver enzyme abnormalities are, however, poor. 6-Thioguanine has been suggested as an alternative to the classical thiopurines azathioprine and 6-mercaptopurine for the treatment of IBD, but there are concerns about its toxicity profile, especially with regard to the induction of nodular regenerative hyperplasia of the liver. Data now suggest that the induction of nodular regenerative hyperplasia of the liver during 6-thioguanine therapy might be dose-dependent or dependent on the level of 6-thioguanine nucleotides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.