Abstract

UDP-glucuronosyltransferases (UGTs), located in the endoplasmic reticulum of liver cells, are an important family of enzymes, responsible for the biotransformation of several endogenous and exogenous chemicals, including therapeutic drugs. However, the phenomenon of ‘latency’, i.e., full UGT activity revealed by disruption of the microsomal membrane, poses substantial challenges for predicting drug clearance based on in vitro glucuronidation assays. This work introduces a microfluidic reactor design comprising immobilized human liver microsomes to facilitate the study of UGT-mediated drug clearance under flow-through conditions. The performance of the microreactor is characterized using glucuronidation of 8-hydroxyquinoline (via multiple UGTs) and zidovudine (via UGT2B7) as the model reactions. With the help of alamethicin and albumin effects, we show that conducting UGT metabolism assays under flow conditions facilitates in-depth mechanistic studies, which may also shed light on UGT latency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.