Abstract

Reactions between active drug substances and excipients are of interest in the drug formulation process should be checked for the interactions during the storage conditions. Some excipients react with certain chemical groups in drug substances which will form new impurities in the finished product formulations. In the present paper transesterification reaction of methylphenidate with glycerin to form different structural isomeric products was described. These impurities identified in forced degradation studies, excipient compatibility studies and stability analysis of the finished product. Stability samples were analyzed and observed that about ~0.6% of the Methylphenidate content was transformed into methylphenidate-glycerin isomers within 3 Months at 40°C/75% RH and 18 Months at 25°C/60% RH conditions. Analysis of two lots of marketed preparations having expiry dates in 2012 and 2013 showed content of the Methylphenidate esters corresponding to ~0.6% of the declared Methylphenidate content. The samples of this impurity were investigated by HPLC, UPLC-MS/MS to generate the mechanism of the impurity formation.

Highlights

  • Methylphenidate (Figure 1) is a central nervous system (CNS) stimulant of the phenethylamine and piperidine classes that is used in the treatment of attention deficit hyperactivity disorder (ADHD) and narcolepsy

  • The objective of the present research article is to give a procedural identification of these unknown peaks and its formation, stability and toxicity in the Methylphenidate oral solution using HPLC, LC-MS/MS

  • LC-MS/MS system (Acquity UPLC coupled with TQD mass spectrometer with empower software, Waters Corporation, Milford, USA) was used for the identification of unknown compounds formed during forced degradation and stability testing studies

Read more

Summary

Introduction

Methylphenidate (Figure 1) (trade names Concerta, Methylin, Medikinet, Ritalin, Equasym XL, Quillivant XR, Metadate) is a central nervous system (CNS) stimulant of the phenethylamine and piperidine classes that is used in the treatment of attention deficit hyperactivity disorder (ADHD) and narcolepsy. Methylphenidate oral solution shows two unknown impurities in the related compound method which is more than the identification threshold as per the ICH guidelines. These impurities identified in forced degradation studies, excipient compatibility studies and stability analysis of the finished product. The objective of the present research article is to give a procedural identification of these unknown peaks and its formation, stability and toxicity in the Methylphenidate oral solution using HPLC, LC-MS/MS. The formation of these impurities is less than one percent, so that the isolation and characterization of these impurities was not feasible.

Chemical and Reagents
Equipment
Chromatographic Conditions
Liquid Chromatography and Mass Spectrometric Conditions
Forced Degradation Studies
Excipient Compatibility Studies and Generation of Reaction Products
Quantitative Analysis and Stability of the Finished Product
Commercial Liquid Preparations of Methylphenidate
Mass Spectrometric Analysis
Results and Discussion
Observations and Structural Elucidation by Mass Spectrometry
Structural Identification of the Possible Isomers Due to Transesterification
Toxicology-Mutagenicity Endpoint
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.