Abstract
P-glycoprotein (P-gp), the product of the human multidrug resistance (MDR1) gene, confers multidrug resistance on cells by acting as an ATP-dependent drug transporter. A method using confocal microscopy was developed to measure the transport activity of P-gp from the rate of movement of doxorubicin, a fluorescent substrate of P-gp, across the membrane of a single cell. Recent work has shown that expression of P-gp enhances the activation of chloride channels in response to cell swelling, suggesting that membrane stretch might switch P-gp from a drug-transporting mode to a mode in which it activates chloride channels. In agreement with this idea, we find that cell swelling inhibits drug efflux in cells expressing P-gp but is without effect on the slower background efflux in cells not expressing P-gp and in cells transiently transfected with a mutated MDR1 in which the ATP hydrolysis sites had been inactivated. The identification of a novel means for inhibiting P-gp-mediated drug transport may have implications for the reversal of multidrug resistance during chemotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.