Abstract

The library of integrated Network-Based Cellular Signatures (LINCS) project aims to create a network-based understanding of biology by cataloging changes in gene expression and signal transduction. Gene expression and proteomic data in LINCS L1000 are cataloged for human cancer cells treated with compounds and genetic reagents. For understanding the related cell pathways and facilitating drug discovery, we developed binary linear programming (BLP) to infer cell-specific pathways and identify compounds' effects using L1000 gene expression and phosphoproteomics data. A generic pathway map for the MCF7 breast cancer cell line was built. Within them, BLP extracted the cell-specific pathways, which reliably predicted the compounds' effects. In this way, the potential drug effects are revealed by our models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.