Abstract
BRD4, the most extensively studied member of the BET family, is an epigenetic regulator that localizes to DNA via binding to acetylated histones and controls the expression of therapeutically important gene regulatory networks through the recruitment of transcription factors to form mediator complexes, phosphorylating RNA polymerase II, and by its intrinsic histone acetyltransferase activity. Disrupting the protein–protein interactions between BRD4 and acetyl-lysine has been shown to effectively block cell proliferation in cancer, cytokine production in acute inflammation, and so forth. To date, significant efforts have been devoted to the development of BRD4 inhibitors, and consequently, a dozen have progressed to human clinical trials. Herein, we summarize the advances in drug discovery and development of BRD4 inhibitors by focusing on their chemotypes, in vitro and in vivo activity, selectivity, relevant mechanisms of action, and therapeutic potential. Opportunities and challenges to achieve selective and efficacious BRD4 inhibitors as a viable therapeutic strategy for human diseases are also highlighted.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.