Abstract

Hydrogels of varying complexity are routinely used as scaffolds and 3D structures for in vitro tumor models to increase physiological relevance within pre-clinical cancer research. Relatively simple hydrogels such as agarose are well characterised, meanwhile biomimetic gels containing collagen and fibrin(ogen) have been studied to a much lesser extent. In this study, hydrogels mimicking the biophysical characteristics of liver cancer progression were investigated in terms of their UV-properties and influence on diffusion coefficients of different substances. UV-imaging technology was used to both visualize and quantify the diffusion process in a simple and rapid way. In general, agarose gel diffusion agreed well with predictions using the Stokes-Einstein equation meanwhile the biomimetic gels reduced diffusion coefficients by up to 70%. For doxorubicin, spatio-temporal tissue concentration modelling was used to translate in vitro diffusion to the more clinical context of tumor penetration in a solid liver tumor supplied by arterial blood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.