Abstract
Upconversion nanoparticles (UCNPs) with unique multi-photon excitation photoluminescence properties have recently been intensively explored as novel contrast agents for low-backgroundbiomedical imaging. In this work, we functionalize UCNPs with a polyethylene glycol (PEG) grafted amphiphilic polymer. The PEGylated UCNPs are loaded with a commonly used chemotherapy molecule, doxorubicin (DOX), by simple physical adsorption via a supramolecular chemistry approach for intracellular drug delivery. The loading and releasing of DOX from UCNPs are controlled by varying pH, with an increased drug dissociation rate in acidic environment, favorable for controlled drug release. Upconversion luminescence (UCL) imaging by a modified laser scanning confocal microscope reveals the time course of intracellular delivery of DOX by UCNPs. It is found that DOX is shuttled into cells by the UCNP nano carrier and released inside cells after endocytosis. By conjugating nanoparticles with folic acid, which targets folate receptors over expressed on various types of cancer cells, we further demonstrate targeted drug delivery and UCL cell imaging with UCNPs. Besides DOX, this non-covalent drug loading strategy can also be used for loading of photosensitizer molecules on UCNPs for potential near-infrared light induced photodynamic therapy. Our results suggest the promise of UCNPs as interesting nano carriers for multi-functional cancer therapy and imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.