Abstract

Magnetic nanoparticles (MNP) have highlighted its relevance in biomedical applications as drug delivery and magnetic hyperthermia devices due to their high surface area, low toxicity, and biocompatibility, as well as intrinsic magnetic properties. In addition, a fine surface engineering of MNP can be used as an approach for a careful adjustment of its target cell recognition capacity and improvement of its intrinsic properties with other biomedical relevance, such as colloidal stability. Thus, this chapter focuses on the exploitation of different MNP surface engineering strategies for the enhancement of therapies based on drug delivery and magnetic hyperthermia. It is reported that MNP surface can be tuned to further modifications, e.g. with biomarkers and how such a surface engineering can improve important properties for its biomedical applications, such as biocompatibility, cell recognition, magnetic properties, and colloidal stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.