Abstract

The correlation between erosion and drug (lidocaine and 6-mercaptopurine, 6-MP) release from amorphous poly(thioether anhydrides), which are synthesized using radical-mediated thiol-ene polymerization, is reported. Cytotoxicity studies of the polymer toward human fibroblast human dermal fibroblasts adult, melanoma A-375, and breast cancer MCF-7 cells are conducted, and drug efficacy of a cancer and autoimmune disease drug (6-MP) when released from the poly(thioether anhydrides) is examined against two cancerous cell types (A-375 and MCF-7). Erosion and drug release studies reveal that lidocaine release is governed by network erosion whereas 6-MP is released by a combination of erosion and diffusion. The cytotoxicity studies show that all three cell types demonstrate high viability, thus cytocompatibility, to poly(thioether anhydrides). Toxicity to the material is dose dependent and comparable to other polyanhydride systems. The 6-MP cancer drug is shown to remain bioactive after encapsulation in the poly(thioether anhydride) matrix and the polymer does not appear to modify the efficacy of the drug.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.