Abstract
The purpose of the present study was to clarify whether the precipitation profile of a drug in bicarbonate buffer (BCB) may differ from that in phosphate buffer (PPB) by a well-controlled comparative study. The precipitation profiles of structurally diverse poorly soluble drugs in BCB and PPB were evaluated by a pH-shift precipitation test or a solvent-shift precipitation test (seven weak acid drugs (pKa: 4.2 to 7.5), six weak base drugs (pKa: 4.8 to 8.4), one unionizable drug, and one zwitterionic drug). To focus on crystal precipitation processes, each ionizable drug was first completely dissolved in an HCl (pH 3.0) or NaOH (pH 11.0) aqueous solution (450 mL, 50 rpm, 37 °C). A 10-fold concentrated buffer solution (50 mL) was then added to shift the pH value to 6.5 to initiate precipitation (final volume: 500 mL, buffer capacity (β): 4.4 mM/ΔpH (BCB: 10 mM or PPB: 8 mM), ionic strength (I): 0.14 M (adjusted by NaCl)). The pH, β, and I values were set to be relevant to the physiology of the small intestine. For an unionizable drug, a solvent-shift method was used (1/100 dilution). To maintain the pH value of BCB, a floating lid was used to avoid the loss of CO2. The floating lid was applied also to PPB to precisely align the experimental conditions between BCB and PPB. The solid form of the precipitants was identified by powder X-ray diffraction and differential scanning microscopy. The precipitation of weak acids (pKa ≤ 5.1) and weak bases (pKa ≥ 7.3) was found to be slower in BCB than in PPB. In contrast, the precipitation profiles in BCB and PPB were similar for less ionizable or nonionizable drugs at pH 6.5. The final pH values of the bulk phase were pH 6.5 ± 0.1 after the precipitation tests in all cases. All precipitates were in their respective free forms. The precipitation of ionizable weak acids and bases was slower in BCB than in PPB. The surface pH of precipitating particles may have differed between BCB and PPB due to the slow hydration process of CO2 specific to BCB. Since BCB is a physiological buffer in the small intestine, it should be considered as an option for precipitation studies of ionizable weak acids and bases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.