Abstract

Binding of quinine- and quinidine-dependent antibodies to platelets was studied using an electroimmunoassay to measure platelet-bound IgG. Antibodies from four patients with drug-induced thrombocytopenia differed significantly in their interaction with platelets: association constants for binding to platelets at high drug concentrations ranged from 0.29 to 2.6 x 10(7) M(-1), the maximum number of antibody molecules bound ranged from 36,000 to 161,000/platelet, the amount of drug necessary to achieve half-maximum binding of antibodies to platelets ranged from 2 to 60 muM, and only one of the antibodies cross-reacted with the stereoisomer of the drug to which the patient was sensitized. Binding of the antibodies to platelets was enhanced at the highest achievable molar ratio of drug:antibody, 10,000:1, rather than being inhibited, as would be expected in a conventional, hapten-dependent reaction. The drug-antibody-platelet reaction was unaffected by Factor VIII/von Willebrand protein, nonspecifically aggregated IgG, or heat-labile complement components. After pretreatment with tritiated quinine, platelets retained several hundred thousand molecules of drug each, but failed to bind detectable amounts of antibody. However, platelets treated simultaneously with quinine-dependent antibody and tritiated quinine retained significantly more drug after repeated washes than platelets treated with drug and normal serum. These findings support the proposition that in quinine- and quinidine-induced thrombocytopenia, drug and antibody combine first in the soluble phase to form a complex, which then binds with high affinity to a receptor on the platelet surface (innocent bystander reaction), and demonstrate that these antibodies are heterogeneous in respect to the amount of drug required to promote their binding to platelets, the number of platelet receptors they recognize, and their binding affinities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.