Abstract

The influence of drug- and environmentally induced alterations in serotonergic and opiate activity on pain sensitivity was assessed in 6-day-old Sprague-Dawley-derived rat pups using tail flick-testing procedures. The opiate agonist morphine was observed to induce tail flick analgesia that was blocked by concurrent administration of the opiate antagonist naloxone. Similarly, the serotonergic agonist quipazine induced analgesia that was blocked by pretreatment with the serotonergic antagonist metergoline. Naloxone alone did not alter tail flick responsivity in non-isolated, nondeprived neonates, suggesting that the opiate system may not exert a significant tonic inhibition of pain sensitivity in neonates. In contrast, the serotonergic system may exert some tonic analgesic influence at this age, given that metergoline was observed to induce slight hyperalgesia in nondeprived, non-isolated neonates. Twenty four hours of food and maternal deprivation, shown previously to increase brain serotonin and 5-hydroxyindole acetic acid and their ratio in neonates (L. P. Spear & F. M. Scalzo, 1984, Developmental Brain Research, in press) was observed to induce tail flick analgesia, an effect blocked by metergoline. Isolation from siblings and the dam and nest for 30 min also induced tail flick analgesia; this analgesia was blocked by treatment with naloxone prior to testing. Together, these experiments support the suggestion that the serotonergic and opiate systems may regulate pain sensitivity even in neonatal rat pups, with agonist- or environmentally precipitated increases in serotonergic or opiate activity inducing significant analgesia during the early postnatal period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call