Abstract

Several recent reports have shown that long short-term memory generative neural networks (LSTM) of the type used for grammar learning efficiently learn to write Simplified Molecular Input Line Entry System (SMILES) of druglike compounds when trained with SMILES from a database of bioactive compounds such as ChEMBL and can later produce focused sets upon transfer learning with compounds of specific bioactivity profiles. Here we trained an LSTM using molecules taken either from ChEMBL, DrugBank, commercially available fragments, or from FDB-17 (a database of fragments up to 17 atoms) and performed transfer learning to a single known drug to obtain new analogs of this drug. We found that this approach readily generates hundreds of relevant and diverse new drug analogs and works best with training sets of around 40,000 compounds as simple as commercial fragments. These data suggest that fragment-based LSTM offer a promising method for new molecule generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.