Abstract

The objective of this study was to investigate the drug adsorption process in human skin using in vitro streaming potential measurements. Streaming potential is an electrokinetic phenomenon, which reflects both the charge density and the pore size of a membrane. Thus, the adsorption of charged solutes on the pore walls can be detected as a change of streaming potential, viz., as a change in the slope ΔE/ΔP. In these streaming potential measurements, hydrophilic nadolol and luteinizing hormone‐releasing hormone, and lipophilic propranolol and Nafarelin were used as model drugs. As could be expected, the hydrophilic drugs did not change the slope. The more lipophilic propranolol and Nafarelin, instead, changed the slope. Propranolol changed the slope gradually from negative to positive when the concentration was increased from 1 to 10 mM. With Nafarelin, a straight line with a slope of about 0 was obtained at pH 7.3 and an ascending curve at pH 4.2. These results indicate that the negative charges on the pore walls of human skin are blocked by adsorption of the lipophilic cations. The adsorption of lipophilic cations in the skin alters the permselectivity of the skin, which, in turn, may lead to the inhibition of electroosmotic flow across the skin during iontophoresis and to the shut down of transdermal drug permeation of higher molecular weight drugs. © 2003 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 92:2366–2372, 2003

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.